
PolicyKit

PolicyKit

Jun 30, 2023

GETTING STARTED

1 Installation and Getting Started 3
1.1 Local Development . 3
1.2 Running PolicyKit on a Server . 4

1.2.1 Deploy with Apache web server . 5
1.2.2 Set up Celery . 7
1.2.3 Interactive Django Shell . 10
1.2.4 Set up Integrations . 11

1.3 Developing the Metagov Gateway . 14

2 Design Overview 15
2.1 Data Model . 15
2.2 Policy Engine Evaluation Loop . 15

3 Writing Policies 17
3.1 Action Types . 17
3.2 Filter . 17
3.3 Initialize . 17
3.4 Check . 18
3.5 Notify . 18
3.6 Pass . 18
3.7 Fail . 18

4 Platform Integrations 19
4.1 Slack . 20
4.2 Open Collective . 20
4.3 Loomio . 20
4.4 GitHub . 20
4.5 SourceCred . 21
4.6 Reddit . 21
4.7 Discord . 21
4.8 Discourse . 21

4.8.1 Setting up your Discourse community . 22
4.8.2 Installing PolicyKit to your Discourse community . 22
4.8.3 Signing in to your PolicyKit dashboard . 22

4.9 Metagov (experimental) . 23
4.9.1 Webhook Trigger Action . 23
4.9.2 Performing actions . 23
4.9.3 Performing governance processes . 23

5 Policy Examples 25

i

5.1 Vote on renaming Slack channels . 25
5.2 Vote on OpenCollective expenses in Slack with restricted voting . 26
5.3 Vote on OpenCollective expenses in Loomio . 28
5.4 Trigger a vote in Discord . 29
5.5 Minimum SourceCred value required for creating Discourse Topic 30
5.6 Don’t allow posts in Slack channel . 31
5.7 Discord ping . 32
5.8 Consensus vote in Slack with restricted voting + reminder . 32
5.9 All Constitution Actions need 1 approval in Slack . 34
5.10 All Constitution Actions Pass and get posted in Slack . 35

6 EvaluationContext 37

7 Community 39
7.1 Community . 39
7.2 CommunityPlatform . 39

8 Actions 41
8.1 BaseAction . 41
8.2 ConstitutionAction . 41
8.3 PlatformAction . 41

9 Policy 43

10 Proposal 45

11 Documents 47
11.1 CommunityDoc . 47

12 User 49
12.1 CommunityUser . 49

13 Role 51
13.1 CommunityRole . 51

14 Vote 53
14.1 UserVote . 53
14.2 BooleanVote . 53
14.3 NumberVote . 53

15 Datastore 55

Python Module Index 57

Index 59

ii

PolicyKit

Consider the platforms you use for online communities today. These platforms only offer governance options that are
top-down, autocratic, and punitive, involving admins and mods. But what if platforms could provide other types of
governance, such as more democratic ones? What if communities could build for themselves the governance that
suits their needs and values?

PolicyKit empowers online community members to concisely author a wide range of governance procedures and
automatically carry out those procedures on their home platforms. Inspired by Nobel economist Elinor Ostrom,
we’ve developed a framework that describes governance as a series of actions and policies, written in short
programming scripts. We’re now building out an editor, software libraries, and connectors to platforms like Slack,
Reddit, and Discord for communities to author actions and policies.

See our ACM UIST 2020 paper and video to learn more. PolicyKit is still in development and will be released soon.
Visit our Github to contribute. To receive updates on PolicyKit, sign up for our mailing list here.

GETTING STARTED 1

https://policykit.org/static/policyengine/pdf/policykit_uist2020.pdf
https://vimeo.com/446531759
https://github.com/amyxzhang/policykit
https://policykit.us17.list-manage.com/subscribe/post?u=4a1d75598cb903abe5974f90d&id=07499cff74

PolicyKit

2 GETTING STARTED

CHAPTER

ONE

INSTALLATION AND GETTING STARTED

On this page, we will take you through the process of setting up PolicyKit, both for local development and on an
Ubuntu server.

1.1 Local Development

PolicyKit requires Python 3. Our guide recommends that you manage the repository with a Python 3+ virtual environ-
ment.

1. To begin, clone the PolicyKit GitHub repository (or your fork) and navigate to the repo directory:

git clone https://github.com/policykit/policykit.git
cd policykit

2. Install Python3, create a virtual environment for Policykit, and ensure your environment is using the latest
version of pip:

sudo apt install python3-pip python-venv
python3 -m venv policykit_venv
source policykit_venv/bin/activate
pip install --upgrade pip

Your terminal prompt should change to look something like this (policykit_venv)user@host:/path/to/
directory/policykit$ after activating the virtual environment.

3. Navigate to the project’s root directory and install PolicyKit’s dependencies:

cd policykit
pip install -r requirements.txt

4. Next, run the following commands to create an .env file to store your settings and secrets:

cd policykit
cp .env.example .env

To run PolicyKit in production, you’ll need to change some values in the .env file such as the
DJANGO_SECRET_KEY and SERVER_URL.

For local development, all you need to do is set DEBUG=true.

5. Navigate up a directory and run the following command to create and set up the database:

cd ..
python3 manage.py migrate

3

https://github.com/amyxzhang/policykit

PolicyKit

By default, PolicyKit will create a sqlite3 database in the project’s root directory. If you want to use another database,
or if you want to change the database path, you can edit the DATABASES field in settings.py. Documentation
for editing this field can be found in the Django docs.

6. Verify that you have setup the PolicyKit server correctly:

python3 manage.py runserver

Open PolicyKit in the browser at http://localhost:8000/main. At this point, you won’t be able to log in because
PolicyKit currently only supports sign-in via external auth providers (Slack, Discord, Reddit, and Discourse).

There is an open issue to support logging in without any third-party platform: #514.

To log in to PolicyKit, you’ll need to install it on a server and set up at least 1 of the auth-enabled integrations.

1.2 Running PolicyKit on a Server

Thus far, we have run Policykit in Ubuntu 18.04 and Ubuntu 20.04. The instructions below should work for both.

1. Add PolicyKit to the server by uploading the codebase or using git clone in /var/www/ or your directory
of choice. This guide will assume that PolicyKit has been added to /var/www/.

git clone https://github.com/policykit/policykit.git
cd policykit

2. Install Python3, create a virtual environment for PolicyKit, and ensure your environment is using the latest
version of pip:

sudo apt install python3-pip python3-venv
python3 -m venv policykit_venv
source policykit_venv/bin/activate
pip install --upgrade pip

Your terminal prompt should change to look something like this (policykit_venv)user@host:/var/www/
policykit$ after activating the virtual environment.

3. Navigate to the project’s root directory and install PolicyKit’s dependencies:

cd policykit
pip install -r requirements.txt

4. Next, run the following commands to create an .env file to store your settings and secrets:

cd policykit
cp .env.example .env

5. Generate a secret key for Django using this command:

cd ..
python3 manage.py shell -c 'from django.core.management import utils;
→˓print(utils.get_random_secret_key())'
cd policykit

6. Make the following changes to .env:

• Set the DJANGO_SECRET_KEY field. Add the key that was generated in the last step

• Set the SERVER_URL field.

4 Chapter 1. Installation and Getting Started

https://docs.djangoproject.com/en/4.1/ref/settings/#databases
http://localhost:8000/main
https://github.com/amyxzhang/policykit/issues/514

PolicyKit

• Set the ALLOWED_HOSTS field to point to your host.

• Make sure DEBUG is empty or set to false.

• Optional, if following the file system architecture used in this guide: set the LOG_FILE field to /var/
log/django/policykit/debug.log

• Be sure to uncomment these fields by removing the # at the start of a line.

• You can leave the platform integration API keys/secrets empty for now. Follow the instructions below
under Set up Integrations to set up each integration.

7. Navigate up a directory and run the following command to create and set up the database:

cd ..
python3 manage.py migrate

By default, PolicyKit will create a sqlite3 database in the root directory. If you want to use another database, or if you
want to change the database path, you can edit the DATABASES field in settings.py. Documentation for editing
this field can be found in the Django docs.

8. Next, run the following command to collect static files into a static/ folder:

python3 manage.py collectstatic

1.2.1 Deploy with Apache web server

Now that you have PolicyKit installed on your server, you can deploy it on Apache web server.

Make sure you have a domain dedicated to Policykit that is pointing to your server’s IP address.

Note: In the remaining examples in this section, make sure to substitute the following values used in the Apache
config files with an absolute path:

$POLICYKIT_REPO is the path to your policykit repository root. (i.e. /var/www/policykit)

$POLICYKIT_ENV is the path to your policykit virtual environment. (i.e.``/var/www/policykit/policykit_venv``)

$SERVER_NAME is your server name. (i.e. policykit.mysite.com)

1. Install apache2 and the apache module Web Server Gateway Interface:

sudo apt-get install apache2 libapache2-mod-wsgi-py3

2. Create a new apache2 config file:

cd /etc/apache2/sites-available
replace SERVER_NAME (i.e. policykit.mysite.com.conf)
cp default-ssl.conf SERVER_NAME.conf

3. Edit the config file to look like this:

<IfModule mod_ssl.c>
<VirtualHost _default_:443>

ServerName $SERVER_NAME
ServerAdmin webmaster@localhost
Alias /static $POLICYKIT_REPO/policykit/static
DocumentRoot $POLICYKIT_REPO

(continues on next page)

1.2. Running PolicyKit on a Server 5

https://docs.djangoproject.com/en/4.1/ref/settings/#databases

PolicyKit

(continued from previous page)

Grant access to the static site
<Directory $POLICYKIT_REPO/policykit/static>

Require all granted
</Directory>

Grant access to wsgi.py file. This is the Django server.
<Directory $POLICYKIT_REPO/policykit/policykit>

<Files wsgi.py>
Require all granted

</Files>
</Directory>

Setup the WSGI Daemon
WSGIDaemonProcess policykit python-home=$POLICYKIT_ENV

→˓python-path=$POLICYKIT_REPO/policykit
WSGIProcessGroup policykit
WSGIScriptAlias / $POLICYKIT_REPO/policykit/policykit/

→˓wsgi.py
.. REST ELIDED

</VirtualHost>
</IfModule>

4. Test your config with apache2ctl configtest. You should get “Syntax OK” as a response.

5. Enable your site:

activate your config
a2ensite /etc/apache2/sites-available/$SERVER_NAME.conf

disable the default ssl config
sudo a2dissite default-ssl.conf

6. Get an SSL certificate and set it up to auto-renew using LetsEncrypt:

sudo apt install certbot python3-certbot-apache
sudo certbot --apache

7. Add the certificates to your $SERVER_NAME.conf file (certbot may auto-inject this code at the bottom of
your .conf):

SSLCertificateFile /etc/letsencrypt/live/$SERVER_NAME/fullchain.pem
SSLCertificateKeyFile /etc/letsencrypt/live/$SERVER_NAME/privkey.pem

8. Reload the config:

systemctl reload apache2

9. Give the Apache2 user (aka www-data) access to the Django log directory and the database directory. Update
paths as needed based on personal setup:

sudo chown -R www-data:www-data /var/log/django/policykit/
sudo chown -R www-data:www-data /var/databases/policykit/

10. Load your site in the browser and navigate to /login. You should see a site titled “PolicKiy Administration”
with options to connect to Slack, Discourse, and Discord. Before you can install PolicyKit into any of these

6 Chapter 1. Installation and Getting Started

PolicyKit

platforms, you’ll need to set the necessary Client IDs and Client Secrets in .env. Follow the setup instructions
for these and other integrations in Integrations.

Check for errors at /var/log/apache2/error.log and /var/log/django/policykit/
debug.log (or whatever logging path you set in .env).

11. Any time you update the code, you’ll need to run systemctl reload apache2 to reload the server.

1.2.2 Set up Celery

PolicyKit uses Celery to run scheduled tasks. Follow these instructions to run a celery daemon on your Ubuntu
machine using systemd. For more information about configuration options, see Celery Daemonization.

Create celery user

If you don’t already have a celery user, create one:

sudo useradd celery -d /home/celery -b /bin/bash

Give the celery user access to necessary pid and log folders:

sudo useradd celery -d /home/celery -b /bin/bash
sudo mkdir /var/log/celery
sudo chown -R celery:celery /var/log/celery
sudo chmod -R 755 /var/log/celery

sudo mkdir /var/run/celery
sudo chown -R celery:celery /var/run/celery
sudo chmod -R 755 /var/run/celery

The celery user will also need write access to the Django log file and the database. To give celery access, create
a group that contains both www-data (the apache2 user) and celery. For example, if your Django logs are in
/var/log/django and your database is in /var/databases:

sudo groupadd www-and-celery
sudo usermod -a -G www-and-celery celery
sudo usermod -a -G www-and-celery www-data

give the group read-write access to logs
sudo chgrp -R www-and-celery /var/log/django/policykit
sudo chmod -R 775 /var/log/django/policykit

give the group read-write access to database (if using sqlite)
sudo chgrp -R www-and-celery /var/databases/policykit
sudo chmod -R 775 /var/databases/policykit

1.2. Running PolicyKit on a Server 7

https://docs.celeryproject.org/en/stable/index.html
https://docs.celeryproject.org/en/stable/userguide/daemonizing.html

PolicyKit

Create Celery configuration files

Next, you’ll need to create three Celery configuration files for PolicyKit

Note: Remember to substitute the following variables with an absolute path:

$POLICYKIT_ENV is the path to your policykit virtual environment. (i.e. /var/www/policykit/
policykit_venv)

$POLICYKIT_REPO is the path to your policykit repository root. (i.e. /var/www/policykit)

/etc/conf.d/celery

CELERYD_NODES="w1"

Absolute or relative path to the 'celery' command:
CELERY_BIN="$POLICYKIT_ENV/bin/celery"

App instance to use
CELERY_APP="policykit"

How to call manage.py
CELERYD_MULTI="multi"

Extra command-line arguments to the worker
CELERYD_OPTS="--time-limit=300 --concurrency=8"

- %n will be replaced with the first part of the nodename.
- %I will be replaced with the current child process index
and is important when using the prefork pool to avoid race conditions.
CELERYD_PID_FILE="/var/run/celery/%n.pid"
CELERYD_LOG_FILE="/var/log/celery/%n%I.log"
CELERYD_LOG_LEVEL="INFO"

you may wish to add these options for Celery Beat
CELERYBEAT_PID_FILE="/var/run/celery/beat.pid"
CELERYBEAT_LOG_FILE="/var/log/celery/beat.log"

/etc/systemd/system/celery.service

[Unit]
Description=Celery Service
After=network.target

[Service]
Type=forking
User=celery
Group=celery
EnvironmentFile=/etc/conf.d/celery
WorkingDirectory=$POLICYKIT_REPO/policykit
ExecStart=/bin/sh -c '${CELERY_BIN} multi start ${CELERYD_NODES} \
-A ${CELERY_APP} --pidfile=${CELERYD_PID_FILE} \
--logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'

(continues on next page)

8 Chapter 1. Installation and Getting Started

PolicyKit

(continued from previous page)

ExecStop=/bin/sh -c '${CELERY_BIN} multi stopwait ${CELERYD_NODES} \
--pidfile=${CELERYD_PID_FILE}'
ExecReload=/bin/sh -c '${CELERY_BIN} multi restart ${CELERYD_NODES} \
-A ${CELERY_APP} --pidfile=${CELERYD_PID_FILE} \
--logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'

[Install]
WantedBy=multi-user.target

/etc/systemd/system/celerybeat.service

[Unit]
Description=Celery Beat Service
After=network.target

[Service]
Type=simple
User=celery
Group=celery
EnvironmentFile=/etc/conf.d/celery
WorkingDirectory=$POLICYKIT_REPO/policykit
ExecStart=/bin/sh -c '${CELERY_BIN} -A ${CELERY_APP} \
beat --pidfile=${CELERYBEAT_PID_FILE} \
--logfile=${CELERYBEAT_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} \
--schedule=/var/run/celery/celerybeat-schedule'

[Install]
WantedBy=multi-user.target

After creating the files (and after any time you change them) run the following command:

sudo systemctl daemon-reload

Next, install RabbitMQ, a message broker:

sudo apt-get install erlang rabbitmq-server

Enable and start the RabbitMQ service:

sudo systemctl enable rabbitmq-server
sudo service rabbitmq-server start

Check the status to make sure everything is running smoothly:

systemctl status rabbitmq-server

Finally, run the following commands to start the celery daemon:

sudo systemctl start celery celerybeat

Verify that there are no errors with celery and celerybeat by running these commands:

sudo systemctl status celery
sudo systemctl status celerybeat

1.2. Running PolicyKit on a Server 9

PolicyKit

Troubleshooting

If celery or celerybeat fail to start up as a service, try running celery directly to see if there are errors in your code:

celery -A policykit worker -l info --uid celery
celery -A policykit beat -l info --uid celery --schedule=/var/run/celery/celerybeat-
→˓schedule

If celerybeat experiences errors starting up, check the logs at /var/log/celery/beat.log.

1.2.3 Interactive Django Shell

The interactive Django shell can be useful when developing and debugging PolicyKit. Access the Django shell with
python manage.py shell_plus. Some useful shell commands for development:

List all communities
Community.objects.all()

List CommunityPlatforms for a specific community
community = Community.objects.first()
CommunityPlatform.objects.filter(community=community)

Get all pending proposals
Proposal.objects.filter(status="proposed")

Manually run the policy checking task that is executed on a schedule by Celery
from policyengine.tasks import evaluate_pending_proposals
evaluate_pending_proposals()

Advanced Commands for debugging Metagov

Access the Metagov Community model
from metagov.core.models import Community as MetagovCommunity
MetagovCommunity.objects.all()
MetagovCommunity.objects.get(slug=community.metagov_slug)

Access the Metagov Plugin models (1:1 with CommunityPlatform)
Plugin.objects.all()
Slack.objects.all()
Plugin.objects.filter(community__slug=community.metagov_slug)

Get pending Metagov GovernanceProcesses
GovernanceProcess.objects.filter(status='pending')
GovernanceProcess.objects.filter(plugin__community=metagov_community)
SlackEmojiVote.objects.filter(status='pending', plugin__community__slug="my-slug")

10 Chapter 1. Installation and Getting Started

PolicyKit

1.2.4 Set up Integrations

Before your instance of PolicyKit can be installed onto external platforms, you’ll need to go through setup steps for
each integration that you want to support.

See the Integrations page for a list of PolicyKit capabilities supported by each platform integration.

Slack

The Slack integration is facilitated through the Metagov plugin.

Slack requires an initial setup process to create bots/apps and allow the developer to store Slack Client IDs and Secrets
on the PolicyKit server.

Begin by creating a new app.

Creating a New App

Visit https://api.slack.com/apps and click the “Create New App” button, and then select the “From scratch” option.

Give your app a name and pick a workspace to develop your app in.

You must be the admin of the workspace to add a new app. If you are not an admin of any current workspace you can
create a new workspace.

Go to the “Basic Information” page and under “Building Apps for Slack”, expand the “Add features and functionality
section”. We will work our way through each subsection detailing how to configure your application.

Incoming Webhooks

1.2. Running PolicyKit on a Server 11

https://api.slack.com/apps

PolicyKit

Activate the toggle from off to on in this section.

Interactive Components

Activate the toggle from off to on in this section.

Enter the following URL in the Request URL box (changing $SERVER_NAME for the server url you setup above):
https://$SERVER_NAME/api/hooks/slack

Slash Commands

No changes needed.

Event Subscriptions

Activate the toggle from off to on in this section.

Enter the following URL in the Request URL box (changing $SERVER_NAME for the server url you setup above):
https://$SERVER_NAME/api/hooks/slack

Bots

Activate the toggle from off to on for Always Show My Bot as Online.

Permissions

Enter the following URL in the Redirected URLs bot in the Redirect URLs section (changing $SERVER_NAME for
the server url you setup above): https://$SERVER_NAME/auth/slack/callback

We recommend adding the following scopes to your app for testing PolicyKit with Slack. Remove unnecessary scopes
after testing:

Bot Token Scopes

• app_mentions:read

• channels:history

• channels:join

• channels:manage

• channels:read

• chat:write

• chat:write.customize

• chat:write.public

• commands

• dnd:read

• emoji:read

• files:read

• groups:read

• groups:write

• im:history

• im:read

• im:write

12 Chapter 1. Installation and Getting Started

PolicyKit

• incoming-webhook

• links:read

• links:write

• mpim:history

• mpim:read

• mpim:write

• pins:read

• pins:write

• reactions:read

• reactions:write

• team:read

• usergroups:read

• usergroups:write

• users.profile:read

• users:read

• users:read.email

• users:write

User Token Scopes

• chat:write

• reactions:read

Install Your App

After defining scopes you are able to install your app to your Slack workspace to test it and generate API tokens.

Go back to the “Basic Information” page and expand the “Install your App section”. Then click “Install to Workspace”.

Setting Your .env

Under the “Basic Information” section are your app credentials, including the App ID, Client ID, Client
Secret, and Signing Secret.

Add these values to your .env in $POLICY_REPO/policykit/policykit/.env

Reload the Apache server

systemctl reload apache2

Connecting PolicyKit to Your Slack App

You can now visit your PolicyKit login page $SERVER_NAME/login and “Install Policykit to Slack”.

You will be prompted to authorize the the app to access your workspace.

After authorizing, you will be presented with three options for governance systems to start with:

• Testing

• Dictator

• Moderators

1.2. Running PolicyKit on a Server 13

PolicyKit

For more information on how to manage policies in PolicyKit see Design Overview and Writing Policies

Production Considerations and Public Distribution

If you plan to allow other Slack workspaces to use your PolicyKit server, you will need to change your Slack app from
private to public distribution. Slack has a guide for distributing your app publicly.

Discord

The Discord integration occurs through Metagov. Instructions for how to setup the plugin for Metagov Discord to be
written.

Discourse

There is no admin setup required for Discourse. Each Discourse community that installs PolicyKit needs to register
the PolicyKit auth redirect separately.

Reddit

1. Create a new app at https://www.reddit.com/prefs/apps

2. Set the REDDIT_CLIENT_SECRET in private.py.

3. Reload apache2: systemctl reload apache2

1.3 Developing the Metagov Gateway

If you’re making changes to the Metagov Gateway and want to test those changes in PolicyKit, you have two options:

1. Push your changes to a branch or fork, and update requirements.txt in PolicyKit to point to
it:

-e git+https://github.com/metagov/gateway.git@<your-dev-branch>
→˓#egg=metagov&subdirectory=metagov

2. Use pip “editable” installs to point to your local Metagov Gateway codebase:

pip install -e /path/to/gateway/repo/metagov

14 Chapter 1. Installation and Getting Started

https://api.slack.com/start/distributing/public
https://www.reddit.com/prefs/apps
https://docs.metagov.org/

CHAPTER

TWO

DESIGN OVERVIEW

2.1 Data Model

• The top-level Community represents a group of users that may exist on 1 or more platforms.

• Each Community has at least 2 CommunityPlatforms: the initial platform (eg SlackCommunity) and the pol-
icykit platform (ConstitutionCommunity). All actions proposed on the PolicyKit platform that are “constitu-
tional” (eg changing a policy, creating a role, etc) are linked to the community’s ConstitutionCommunity.

• Each Policy in a community is tied to 1 or more Action Types. For Platform Policies and Constitution Policies,
the action type indicates which action type the policy governs. For Trigger Policies, the action type indicates
which action types trigger the policy to evaluate. When a Policy is evaluated against an Action, a Proposal
record is created to store any data relevant to the policy evaluation.

• CommunityRole is tied to Community (not CommunityPlatform) because it may determine the ability
to propose/execute governable actions, which may occur on any platform. A given CommunityRole may be
assigned to CommunityUsers on multiple platforms (which in some cases may be the same person, eg “alice123”
on Discourse and “alice” on Slack).

2.2 Policy Engine Evaluation Loop

This diagram shows what happens when a new Action is created, and how the Policy engine decides whether to
perform a policy evaluation for it. This diagram does not include the policy evaluation checker task, which periodically
re-evaluates all Proposals that are in “PROPOSED” state.

15

PolicyKit

16 Chapter 2. Design Overview

CHAPTER

THREE

WRITING POLICIES

Once any new action is proposed by a user, either by invoking it on the PolicyKit website or on a particular community
platform, it passes through the Policy engine evaluation loop. It may be helpful to review the Policy Engine Evaluation
Loop to understand how policy evaluations are triggered.

Policy code is divided into 5 discrete blocks: filter, initialize, check, notify, pass, and fail. Scope is
not shared across blocks. See the Evaluation Context reference for what’s in scope to the policy author in each block.

See Policy Examples for example policies that can be downloaded and uploaded into your PolicyKit community.

3.1 Action Types

This field specifies the scope of the policy. For Platform Policies and Constitution Policies, the action type indicates
which action type the policy governs. For Trigger Policies, the action type indicates which action types trigger the
policy to evaluate. When a Policy is evaluated against an Action, a Proposal record is created to store any data
relevant to the policy evaluation.

Each community is set up with a Starter Kit which defines the Base Policies for governing platform and constitution
actions. Base policies act as a “fallback policy” and applies to ALL action types. Base policies are overridden by
creating more specific Platform and Constitution policies.

3.2 Filter

This function allows the policy author to further filter down the scope of the policy. The function returns True if the
policy governs the action object passed in as an argument. For instance, if the policy is meant to cover only one type
of action, the function can check the action_type field of the action object. The policy could also filter on the
initiator of the action or even the time of day, if, for example, the community has decided that Friday evenings are a
free-for-all in a particular channel.

3.3 Initialize

If filter returns true, the action in question is considered in scope for this policy, and we move on to initialize.
Within this function, the author can specify any code that must be completed once at the start of the policy to set it up.

17

PolicyKit

3.4 Check

This block should return PROPOSED, PASSED, or FAILED.

The check function specifies the conditions that need to be met so that an action has passed or failed. For example, it
may test whether a vote has reached a quorum, or whether an elected individual has responded to the proposal. When
created, all actions have a status of PROPOSED. New actions first encounter check immediately after initialize;
this is so that in case the policy can already pass or fail, we can exit the workflow early. For instance, if there was a
policy that holds messages containing profanity for review by a moderator, the policy would automatically pass actions
that do not contain profanity.

As long as an action is still PROPOSED, check will run periodically until it returns PASSED or FAILED. If check
does not return anything, PROPOSED is presumed. For instance, if a policy calls for a vote from users, it may take
time for the required number of votes to come in. The policy’s check function could also specify a maximum amount
of time, at which point the action fails.

3.5 Notify

If the policy involves reaching out to one or more community members for input, then the code for notifying members
occurs in this function. While policy authors can send messages to users in any function, this function is specifically
for notifications soliciting user input. Authors may use the method initiate_vote to start a vote on whether or
not to pass the action. This function is only run once, after a new action does not return PASSED or FAILED from the
first check, so as to not unnecessarily notify users.

3.6 Pass

This function runs if an action is passed (e.g. check returned PASSED). Code that could go here includes: post-action
clean-up tasks such as announcing the outcome to the voters or to the community.

When a Governable Action is passed, the engine automatically executes it, if applicable (see evaluation loop diagram).

3.7 Fail

This function runs if the action fails to pass the policy (e.g. check returned FAILED). Code that could go here
includes: invoking fall-back actions due to failure, or share the outcome privately with the proposer alongside an
explanation of why the action failed.

When a Governable Action is failed, the engine automatically executes it, if applicable (see evaluation loop diagram).

18 Chapter 3. Writing Policies

CHAPTER

FOUR

PLATFORM INTEGRATIONS

PolicyKit is an application that sits on its own server. However, it would be prohibitive if users of a social platform
needed to go to PolicyKit for every governance task, such as proposing an action or voting on a proposal. In addition,
as PolicyKit needs to enforce policies, it must have a way of stopping and allowing actions that are carried out on the
platform itself, since the platform already has an existing governance that PolicyKit must supersede. These
capabilities are defined in platform integration libraries that can be developed for any platform to connect with
PolicyKit. Once a single developer has created an integration using a platform’s web API, any community on that
platform can use PolicyKit.

In order to install PolicyKit to a community, there must be an authentication mechanism, such as OAuth, for at least
one admin or mod account to give access to PolicyKit so that it may govern a broad set of actions, including privileged
ones. In addition, each platform integration supports one or more of these capabilities:

• Actions are API requests to perform some action on a platform, such as sending a message to users. Some
platforms don’t require authentication (like SourceCred), others require API keys to be uploaded (Loomio,
Open Collective) and others need to be authenticated via an OAuth flow (Slack, GitHub).

• Trigger Actions are platform events that can be used as policy triggers. Typically these are received via web-
hooks, so they may require registering a PolicyKit webhook URL for your community on the external platform.
For platforms that don’t support webhooks, some integrations have a polling mechanism to fetch data periodi-
cally and create triggers from new events.

• Governable Actions are a PolicyKit construct that combines “actions” and “trigger actions.” A Governable
Action can be reverted and re-executed, which allows PolicyKit to “govern” that capability on the platform.
Policies that govern platform actions are called Platform Policies (see Policy Examples). This capability may
require an admin account to give access to PolicyKit so that it may govern a broad set of actions, including
privileged ones. All Governable Actions can also be used as triggers for Trigger Policies.

• Voting is the ability to perform a vote on an external platform and capture the result.

Once you have installed PolicyKit to one platform, you can enable additional integrations on the Settings page. Only
users with the Integration Admin role are able to add and remove integrations.

Note: Some integrations require one-time setup process by a PolicyKit server admin. If you deploying your own
instance of PolicyKit, see Installation and Getting Started for instructions. Platforms like Slack and Discord require
an initial setup process to create bots/apps and store their Client IDs and secrets on the PolicyKit server.

Here is an overview of the capabilities supported by each platform integration:

19

PolicyKit

4.1 Slack

The authentication mechanism for the Slack Integration is OAuth. The installing user must be an admin on Slack in
order to install PolicyKit.

Actions Write policies that perform actions on Slack, such as posting messages.
Trigger Actions Write Trigger Policies that are triggered by events that occurred on Slack (e.g.

“when a Slack channel is renamed, update the generated welcome post”)
Governable Actions Write Platform Policies that govern Slack actions (e.g. “only users with X role

can rename Slack channels”)
Voting Write policies that perform boolean- or single-choice voting in Slack channels

or DMs.

4.2 Open Collective

The authentication mechanism for the Open Collective Integration is an API Key for a user with admin access to the
collective. It also requires registering a webhook in Open Collective. Follow instructions on the setup page.

Actions Write policies that perform actions on Open Collective, such as processing ex-
penses or posting comments.

Trigger Actions Write Trigger Policies that are triggered by events that occurred on the Open
Collective platform (e.g. “when an expense is created, start a vote on Slack”)

Governable Actions
Voting

4.3 Loomio

The authentication mechanism for the Loomio Integration is an API Key. It also requires registering a webhook in
Loomio. Follow instructions on the setup page.

Actions
Trigger Actions
Governable Actions
Voting Write policies that perform votes on Loomio.

4.4 GitHub

The authentication mechanism for the GitHub Integration is OAuth.

Actions
Trigger Actions Write Trigger Policies that are triggered by events that occurred on GitHub

(e.g. “when a new issue is created, post about it on Slack if certain conditions
are met”).

Governable Actions
Voting Write policies that perform votes on Github.

20 Chapter 4. Platform Integrations

PolicyKit

4.5 SourceCred

There is no authentication mechanism for the SourceCred Integration. The SourceCred server must be public. The
only thing this integration supports is fetching cred and grain values.

Actions Write policies that fetch SourceCred values from the configured SourceCred
instance.

Trigger Actions
Governable Actions
Voting

4.6 Reddit

Actions Write policies that perform actions on Reddit, such as posting messages.
Trigger Actions Write Trigger Policies that are triggered by events that occurred on Reddit.
Governable Actions Write Platform Policies that govern Reddit posting
Voting Write policies that perform boolean voting on a Reddit thread

4.7 Discord

The authentication mechanism for the Discord Integration is OAuth. The installing user must be an admin on Discord
in order to install PolicyKit.

Actions Write policies that perform actions on Discord, such as posting messages.
Trigger Actions The only supported trigger action currently is DiscordSlashCommand. (e.g.

“when a user invokes the policykit bot with “/policykit whatever”, do some-
thing)

Governable Actions
Voting Write policies that perform boolean- or single-choice voting in a Discord chan-

nel.

4.8 Discourse

The authentication mechanism for the Discourse Integration is OAuth. This integration requires a Discourse admin to
do some setup steps in Discourse before PolicyKit can be installed.

Actions Write policies that create posts and topics on Discourse.
Trigger Actions Write Trigger Policies that are triggered by events that occurred on Discourse

(e.g. “when a user posts a new topic in a certain category, do something)
Governable Actions Write Platform Policies that govern Discourse actions (e.g. “only users with X

amount of Cred can post on this Discourse topic”)
Voting

4.5. SourceCred 21

PolicyKit

4.8.1 Setting up your Discourse community

You can set up a Discourse community either by running a server that hosts a community locally or by creating a
community hosted remotely by Discourse.org. To host a community remotely, you can press “Start Trial” on this page
and follow the instructions to set up a community. Discourse.org offers free 14 day trials, which can be extended by
contacting support.

Once the site is up and running, you need to configure a few settings to enable PolicyKit to interact with your site.
On the site homepage, log in as your admin account and enter the Settings menu (located on the top right of the
homepage). On the left sidebar, select the User API page. On this page, you should set / verify the following settings:

• allow user api keys: checked

• allow user api key scopes: Select the scopes you want to enable here. Possible scopes: read, write,
message_bus, push, notifications, session_info, one_time_password. Recommend allow-
ing all the scopes for full usability of PolicyKit.

• min user level for user api key: 0

• allowed user api auth redirects: Add an entry: [POLICYKIT_URL]/discourse/auth. (example:
https://policykit.org/discourse/auth)

4.8.2 Installing PolicyKit to your Discourse community

On the login page, select “Install PolicyKit to Discourse”. On the Configure screen that appears, enter the full URL
of your Discourse community (example: https://policykit.trydiscourse.com). On the next screen that
appears, you must approve PolicyKit’s authorization to access your Discourse community. On the third and final
screen, you must select a Starter Kit system of governance, which will initialize your community with the selected
system of governance.

For testing purposes, we recommend trying out the Testing Starter Kit, which will give all members in the community
complete access to PolicyKit action. For more experienced PolicyKit users who are hoping to use PolicyKit with an
existing community, we recommend trying out one of the other more restrictive Starter Kits.

Once you have selected a Starter Kit, you will be redirected back to the login page. If PolicyKit was installed correctly,
you should see a text message near the top saying “Successfully added PolicyKit!”. If you see this success message,
you are all set to sign in to your Discourse community’s dashboard.

4.8.3 Signing in to your PolicyKit dashboard

On the login page, select “Sign in with Discourse”. This will display a screen asking “Which Discourse community
would you like to sign into?” In the text box, enter the full URL of your Discourse community (example: https://
policykit.trydiscourse.com) and press Continue. Once again, you must approve PolicyKit’s authorization
to access your Discourse community. After approving the request, you should be in! You should now be able to see
your PolicyKit dashboard and use all the features of PolicyKit with your Discourse community.

22 Chapter 4. Platform Integrations

https://www.discourse.org/
https://www.discourse.org/pricing

PolicyKit

4.9 Metagov (experimental)

PolicyKit uses Metagov to integrate with and and govern a range of external platforms. PolicyKit exposes some
generic tools to interact with any available Metagov plugins. These are experimental and typically would only be used
if you are developing a new Metagov Plugin that doesn’t yet have a PolicyKit integration.

4.9.1 Webhook Trigger Action

All events received from Metagov generate a generic trigger action. To write a policy triggered by this generic action,
select Webhook Trigger Action in the action types dropdown. Use the filter block to choose which event
type your policy is triggered by. The event type is stored at action.event_type, and any additional data is stored
as a dict at action.data.

"filter" block

return action.event_type == 'opencollective.expense_created'

4.9.2 Performing actions

Platform policies have access to a metagov client that can be used to perform actions that are defined on a Metagov
Plugin. Policy authors can only use actions that are defined in Plugins that are currently enabled in their community.

"check" block

parameters = {"low": 0, "high": 10}
response = metagov.perform_action("randomness.random-int", parameters)
if response and response.get('value') > 5:

return PASSED
else:

return FAILED

4.9.3 Performing governance processes

Platform policies can use the metagov client to perform asynchronous governance processes. Here’s a partial exam-
ple of a policy that uses the loomio.poll process to perform a vote.

"notify" block kicks off the process

import datetime

closing_at = (action.proposal.proposal_time + datetime.timedelta(days=3)).strftime("
→˓%Y-%m-%d")
result = metagov.start_process("loomio.poll", {

"title": "Agree or disagree?",
"options": ["agree", "disagree"],
"closing_at": closing_at

})
poll_url = result.get('poll_url')

"check" block polls for the process outcome

(continues on next page)

4.9. Metagov (experimental) 23

http://docs.metagov.org/

PolicyKit

(continued from previous page)

result = metagov.get_process()
if result.status != "completed":

return # still processing
if result.errors:

return FAILED
if result.outcome:

agree_count = result.outcome.get("agree")
disagree_count = result.outcome.get("disagree")
return PASSED if agree_count > disagree_count else FAILED

return FAILED

24 Chapter 4. Platform Integrations

CHAPTER

FIVE

POLICY EXAMPLES

This is a library of example policies to get started.

5.1 Vote on renaming Slack channels

When a channel is renamed in Slack, revert the change and perform a vote. If the vote passes, execute the rename.

Download Policy

Policy Kind: Platform

Action Types: slackrenameconversation

Filter:

return True

Initialize:

pass

Check:

yes_votes = proposal.get_yes_votes().count()
no_votes = proposal.get_no_votes().count()
logger.debug(f"{yes_votes} for, {no_votes} against")
if yes_votes >= 1:

return PASSED
elif no_votes >= 1:

return FAILED

logger.debug("No votes yet....")
return PROPOSED

Notify:

message = f"Should this channel be renamed to #{action.name}? Vote with :thumbsup: or
→˓:thumbsdown: on this post."
slack.initiate_vote(text=message)

Pass:

text = f"Proposal to rename this channel to #{action.name} passed."
slack.post_message(text=text, channel=action.channel, thread_ts=proposal.vote_post_id)

25

https://raw.githubusercontent.com/amyxzhang/policykit/master/policy_examples/Vote_on_renaming_Slack_channels.json

PolicyKit

Fail:

text = f"Proposal to rename this channel to #{action.name} failed."
slack.post_message(text=text, channel=action.channel, thread_ts=proposal.vote_post_id)

5.2 Vote on OpenCollective expenses in Slack with restricted voting

Posts OpenCollective expenses to Slack channel to be voted on. If expense has three or more yes votes and one or
less no votes after three hours, approves, otherwise waits until three days has passed and approves if there are any yes
votes and no no votes, otherwise rejects. Once the vote is resolved, posts to both Slack thread and the OpenCollective
expense thread with vote results. Restricts voting on OpenCollective expenses to eligible voters.

Download Policy

Policy Kind: Trigger

Action Types: expensecreated

Filter:

return True

Initialize:

pass

Check:

if not proposal.vote_post_id:
return None #the vote hasn't started yet

Check the status of the vote and evaluate a closing condition.

yes_votes = proposal.get_yes_votes().count()
no_votes = proposal.get_no_votes().count()
#logger.debug(f"{yes_votes} for, {no_votes} against")

time_elapsed = proposal.get_time_elapsed()

we never close a vote before three hours
if time_elapsed < datetime.timedelta(hours=3):

return None

if there are three or more votes for, and one or less against, it passes
if yes_votes >= 2 and no_votes <= 1:
return PASSED

if there's more than one vote against, and less than three yes votes, it fails
if no_votes > 0:

return FAILED

if it's been three days, and there are any yeses and no nos, pass, otherwise fail
if time_elapsed > datetime.timedelta(days=3):

logger.info("Ending based on time")
reached_threshold = yes_votes > 0 and no_votes == 0
return PASSED if reached_threshold else FAILED

(continues on next page)

26 Chapter 5. Policy Examples

https://raw.githubusercontent.com/amyxzhang/policykit/master/policy_examples/Vote_in_Slack_on_OpenCollective_expenses_with_restricted_voting_.json

PolicyKit

(continued from previous page)

return PROPOSED # still pending

Notify:

Start a vote on Slack. Only 2 users are eligible to vote.
discussion_channel = "C0177HZTXXX"

eligible_voters = ["UABC123", "UABC999"] # Slack member IDs for Alice and Bob
message = f"Vote on whether to approve <{action.url}|this request> for funds: {action.
→˓description}"
slack.initiate_vote(text=message, channel=discussion_channel, users=eligible_voters)

Start a discussion thread on the voting message
slack.post_message(text="Discuss here! :meow-wave:", channel=discussion_channel,
→˓thread_ts=proposal.vote_post_id)

Add a comment to the expense on Open Collective with a link to the Slack vote
link = f"on Slack"
text = f"Thank you for submitting a request! A vote has been started {link}."
opencollective.post_message(text=text, expense_id=action.expense_id)

Pass:

approve the expense
opencollective.process_expense(action="APPROVE", expense_id=action.expense_id)

yes_votes = proposal.get_yes_votes().count()
no_votes = proposal.get_no_votes().count()
message = f"Expense approved. The vote passed with {yes_votes} for and {no_votes}
→˓against."

comment on the expense
opencollective.post_message(text=message, expense_id=action.expense_id)

update the Slack thread
discussion_channel = "C0177HZTXXX"
slack.post_message(text=message, channel=discussion_channel, thread_ts=proposal.vote_
→˓post_id)

Fail:

reject the expense
opencollective.process_expense(action="REJECT", expense_id=action.expense_id)

yes_votes = proposal.get_yes_votes().count()
no_votes = proposal.get_no_votes().count()
message = f"Expense rejected. The vote failed with {yes_votes} for and {no_votes}
→˓against."

comment on the expense
opencollective.post_message(text=message, expense_id=action.expense_id)

update the Slack thread
discussion_channel = "C0177HZTXXX"
slack.post_message(text=message, channel=discussion_channel, thread_ts=proposal.vote_
→˓post_id)

5.2. Vote on OpenCollective expenses in Slack with restricted voting 27

PolicyKit

5.3 Vote on OpenCollective expenses in Loomio

When an expense is submitted in Open Collective, start a proposal on Loomio. The vote closes when 3 days have
passed. Approve or reject the OC expense based on the vote results, and post a comment on the OC expense with the
vote count.

Download Policy

Policy Kind: Trigger

Action Types: expensecreated

Filter:

return True

Initialize:

pass

Check:

if not proposal.is_vote_closed:
Proposal is still pending in Looomio
return PROPOSED

consent_count = proposal.get_choice_votes(value="consent").count()
objection_count = proposal.get_choice_votes(value="objection").count()

oc_action = None
oc_message = None

if objection_count > 0:
If 1 or more people objected, reject the expense.
oc_action = "REJECT"
oc_message = f"Expense rejected. Loomio proposal had {objection_count} objection{'s

→˓' if objection_count > 1 else ''}."
elif consent_count > 2:

If enough people consented, approve the expense.
oc_action = "APPROVE"
oc_message = f"Expense approved. {consent_count} members consented on Loomio."

else:
If nobody objected, but not enough people consented, leave the expense open.
oc_message = f"Consensus was not reached on Loomio. {consent_count} members

→˓consented and {objection_count} members objected."

Process the expense (if applicable)
if oc_action:

opencollective.process_expense(action=oc_action, expense_id=action.expense_id)

Comment on the expense
opencollective.post_message(text=oc_message, expense_id=action.expense_id)

return PASSED

Notify:

28 Chapter 5. Policy Examples

https://raw.githubusercontent.com/amyxzhang/policykit/master/policy_examples/Vote_in_Loomio_on_OpenCollective_expenses.json

PolicyKit

closing_at = proposal.proposal_time + datetime.timedelta(days=3)

Start vote on Loomio
loomio.initiate_vote(

proposal,
title=f"Expense '{action.description}'",
poll_type="proposal",
details=f"Submitted on Open Collective: {action.url}",
options=["consent", "objection"],
closing_at=closing_at,

)

loomio_poll_url = proposal.vote_url
logger.debug(f"Vote started at {loomio_poll_url}")

Record start of vote on Open Collective
link = f"on Loomio"
text = f"Thank you for submitting a request! A vote has been started {link}."
opencollective.post_message(text=text, expense_id=action.expense_id)

Pass:

pass

Fail:

pass

5.4 Trigger a vote in Discord

This policy performs a 5-minute vote. It is triggered using a Slash command in a Discord channel. For example:
‘/policykit vote should we cancel todays meeting?’

Download Policy

Policy Kind: Trigger

Action Types: discordslashcommand

Filter:

VOTE_TRIGGER_PREFIX = "vote"

return action.value.startswith(VOTE_TRIGGER_PREFIX)

Initialize:

pass

Check:

VOTE_DURATION_MINUTES = 5

if proposal.get_time_elapsed() < datetime.timedelta(minutes=VOTE_DURATION_MINUTES):
logger.debug("waiting for 5 minutes to elapse...")

(continues on next page)

5.4. Trigger a vote in Discord 29

https://raw.githubusercontent.com/amyxzhang/policykit/master/policy_examples/Trigger_a_vote_in_Discord.json

PolicyKit

(continued from previous page)

return PROPOSED

msg = None
if proposal.get_yes_votes().count() >= 1:

msg = "vote passed!"
elif proposal.get_no_votes().count() >= 1:

msg = "vote failed!"
else:

msg = "not enough votes to make a decision"

discord.post_message(text=msg, channel=action.channel, message_id=proposal.vote_post_
→˓id)

return PASSED

Notify:

VOTE_TRIGGER_PREFIX = "vote"
VOTE_DURATION_MINUTES = 5

vote_text = action.value[len(VOTE_TRIGGER_PREFIX):].strip()
vote_text += f" Vote closes in {VOTE_DURATION_MINUTES} minutes."

discord.initiate_vote(text=vote_text)

Pass:

pass

Fail:

pass

5.5 Minimum SourceCred value required for creating Discourse Topic

Only users with at least 300 cred can create new topics in a certain Discourse category. If a user does not pass the
threshold, the topic gets deleted (aka the ‘governed action’ is reverted).

Download Policy

Policy Kind: Platform

Action Types: discoursecreatetopic

Filter:

return action.category == 8

Initialize:

pass

Check:

value = sourcecred.get_cred(username=action.initiator.username)
return PASSED if value > 300 else FAILED

30 Chapter 5. Policy Examples

https://raw.githubusercontent.com/amyxzhang/policykit/master/policy_examples/Minimum_SourceCred_value_required_for_creating_Discourse_Topic.json

PolicyKit

Notify:

pass

Pass:

pass

Fail:

pass

5.6 Don’t allow posts in Slack channel

This could be extended to add any logic to determine who can post in a given channel. Posts in the channel are deleted,
and the user is notified about why it happened.

Download Policy

Policy Kind: Platform

Action Types: slackpostmessage

Filter:

return action.channel == "C025LDZ76R3"

Initialize:

pass

Check:

return FAILED

Notify:

pass

Pass:

pass

Fail:

create an ephemeral post that is only visible to the poster
message = f"Post was deleted because of policy '{policy.name}'"
slack.post_message(

channel=action.channel,
users=[action.initiator],
post_type="ephemeral",
text=message

)

5.6. Don’t allow posts in Slack channel 31

https://raw.githubusercontent.com/amyxzhang/policykit/master/policy_examples/Don_t_allow_posts_in_Slack_channel.json

PolicyKit

5.7 Discord ping

Testing policy that responds to a slash command invocation in Discord.

Download Policy

Policy Kind: Trigger

Action Types: discordslashcommand

Filter:

return action.value == "ping"

Initialize:

discord.post_message("pong", action.channel)

Check:

return PASSED

Notify:

pass

Pass:

pass

Fail:

pass

5.8 Consensus vote in Slack with restricted voting + reminder

Allows users to trigger a vote in the #core-group slack channel. Only core group members are able to cast votes.
Following community policy, all votes must pass via consensus. One day before a policy is about to be resolved by
default, reminds core-group members that the vote is still open.

Download Policy

Policy Kind: Trigger

Action Types: slackpostmessage

Filter:

return action.text.startswith("core-group-vote")

Initialize:

pass

Check:

32 Chapter 5. Policy Examples

https://raw.githubusercontent.com/amyxzhang/policykit/master/policy_examples/Discord_ping.json
https://raw.githubusercontent.com/amyxzhang/policykit/master/policy_examples/Consensus_vote_in_Slack_with_restricted_voting___reminder.json

PolicyKit

CONSTANTS
CHANNEL = "C0ABC123"
LENGTH_OF_VOTE_IN_DAYS = 5
MINIMUM_YES_VOTES = 2
MAXIMUM_NO_VOTES = 0
ELIGIBLE_VOTERS = ["U01", "U02", "U03", "U04", "U05", "U06"]

save for later
proposal.data.set("eligible_voters", ELIGIBLE_VOTERS)
proposal.data.set("discussion_channel", CHANNEL)

if not proposal.vote_post_id:
return PROPOSED #the vote hasn't started yet

vote info
consent_votes = proposal.get_choice_votes(value="consent")
object_votes = proposal.get_choice_votes(value="object")
abstain_votes = proposal.get_choice_votes(value="abstain")
logger.debug(f"{consent_votes} for, {object_votes} against, {abstain_votes} abstain")

if everyone has consented or abstained, the vote passes
if len(consent_votes) + len(abstain_votes) == len(ELIGIBLE_VOTERS):

return PASSED

if voting is almost over, remind people who haven't voted
reminder_sent = proposal.data.get('reminder_sent')
if not reminder_sent and proposal.get_time_elapsed() > datetime.timedelta(days=LENGTH_
→˓OF_VOTE_IN_DAYS-1):
already_voted = proposal.get_choice_votes().values_list("user__username")
already_voted_list = [voter[0] for voter in already_voted]
nonvoter_list = [f"<@{uid}>" for uid in ELIGIBLE_VOTERS if uid not in already_voted_

→˓list]
nonvoter_string = ", ".join(nonvoter_list)
logger.debug(f"Eligible voters: {ELIGIBLE_VOTERS}; Already voted: {already_voted};

→˓Nonvoter list: {nonvoter_list}")
reminder_msg = f"There is one day left to vote on this proposal. {nonvoter_string}

→˓have not voted yet."
slack.post_message(text=reminder_msg, channel=action.channel, thread_ts=proposal.

→˓vote_post_id)
proposal.data.set("reminder_sent", True)

if time's up, resolve
if proposal.get_time_elapsed() > datetime.timedelta(days=LENGTH_OF_VOTE_IN_DAYS):

if object_votes.count() > MAXIMUM_NO_VOTES:
return FAILED

if consent_votes.count() < MINIMUM_YES_VOTES:
return FAILED

return PASSED

return PROPOSED # still pending

Notify:

Start a vote on Slack
discussion_channel = proposal.data.get('discussion_channel')
eligible_voters = proposal.data.get('eligible_voters')

(continues on next page)

5.8. Consensus vote in Slack with restricted voting + reminder 33

PolicyKit

(continued from previous page)

proposal_text = action.text.replace("core-group-vote ", "").strip()
message = f"<@channel>, please respond to this proposal: {proposal_text} If all core
→˓group members respond by consenting or abstaining, or if after five days there are
→˓no objections and at least two consents, the proposal passes."
slack.initiate_vote(text=message, channel=discussion_channel,

users=eligible_voters, options=["consent", "object", "abstain"])
slack.post_message(text="Discuss here! :meow-wave:", channel=discussion_channel,
→˓thread_ts=proposal.vote_post_id)

Pass:

Announce result on thread
text = f"<@{action.initiator.username}>'s proposal passed!"
slack.post_message(text=text, channel=action.channel, thread_ts=proposal.vote_post_id)

Fail:

Announce result on thread
text = f"<@{action.initiator.username}>'s proposal failed."
slack.post_message(text=text, channel=action.channel, thread_ts=proposal.vote_post_id)

5.9 All Constitution Actions need 1 approval in Slack

All constitution actions trigger a Slack vote. In order to pass, the proposal must get at least 1 approval within 3 hours.
If the proposal gets any downvotes, it fails.

Download Policy

Policy Kind: Constitution

Filter:

return True

Initialize:

pass

Check:

if proposal.get_yes_votes().count() > 0:
return PASSED

if proposal.get_no_votes().count() > 0:
return FAILED

if proposal.get_time_elapsed() > datetime.timedelta(hours=3):
logger.debug(f"Failing proposed constitution change, no approvals in 3 hours")
return FAILED

return PROPOSED

Notify:

34 Chapter 5. Policy Examples

https://raw.githubusercontent.com/amyxzhang/policykit/master/policy_examples/All_Constitution_Actions_need_1_approval_in_Slack.json

PolicyKit

message = f"'{action}' proposed by {action.initiator.readable_name}"
governance_channel = "C0001"
slack.initiate_vote(text=message, channel=governance_channel)

Pass:

message = f"Constitutional change accepted!"
governance_channel = "C0001"
slack.post_message(text=message, channel=governance_channel, thread_ts=proposal.vote_
→˓post_id)

Fail:

message = f"Constitutional change rejected."
governance_channel = "C0001"
slack.post_message(text=message, channel=governance_channel, thread_ts=proposal.vote_
→˓post_id)

5.10 All Constitution Actions Pass and get posted in Slack

All constitution actions pass automatically and get posted to a governance channel in Slack. Constitution actions are
changes to policies, roles, and documents.

Download Policy

Policy Kind: Constitution

Filter:

return True

Initialize:

pass

Check:

return PASSED

Notify:

pass

Pass:

message = f"Constitution change '{action}' proposed by {action.initiator.readable_
→˓name} passed."
governance_channel = "C000111"
slack.post_message(text=message, channel=governance_channel)

Fail:

pass

5.10. All Constitution Actions Pass and get posted in Slack 35

https://raw.githubusercontent.com/amyxzhang/policykit/master/policy_examples/All_Constitution_Actions_Pass_and_get_posted_in_Slack.json

PolicyKit

36 Chapter 5. Policy Examples

CHAPTER

SIX

EVALUATIONCONTEXT

class policyengine.engine.EvaluationContext(proposal)
Class to hold all variables available in a policy evaluation. All attributes on this class are in scope and can be
used by the policy author.

proposal
The proposal representing this evaluation.

Type Proposal

action
The action that triggered this policy evaluation.

Type BaseAction

policy
The policy being evaluated.

Type Policy

slack

Type SlackCommunity

discord

Type DiscordCommunity

discourse

Type DiscourseCommunity

reddit

Type RedditCommunity

github

Type GithubCommunity

opencollective

Type OpencollectiveCommunity

loomio

Type LoomioCommunity

sourcecred

Type SourcecredCommunity

37

PolicyKit

metagov
Metagov library for performing enabled actions and processes.

Type Metagov

logger
Logger that will log messages to the PolicyKit web interface.

Type logging.Logger

variables
Dict with policy variables keys and values

Type Policy.variables

38 Chapter 6. EvaluationContext

CHAPTER

SEVEN

COMMUNITY

7.1 Community

class policyengine.models.Community(*args, **kwargs)
A Community represents a group of users. They may exist on one or more online platforms.

get_roles()
Returns a QuerySet of all roles in the community.

get_platform_policies(is_active=True)
Returns a QuerySet of all platform policies in the community.

get_constitution_policies(is_active=True)
Returns a QuerySet of all constitution policies in the community.

get_trigger_policies(is_active=True)
Returns a QuerySet of all trigger policies in the community.

get_documents(is_active=True)
Returns a QuerySet of all documents in the community.

7.2 CommunityPlatform

class policyengine.models.CommunityPlatform(*args, **kwargs)
A CommunityPlatform represents a group of users on a single platform.

platform = None
The name of the platform (‘Slack’, ‘Reddit’, etc.).

community_name
The name of the community.

community
The Community that this CommunityPlatform belongs to.

initiate_vote(proposal, users=None)
Initiates a vote on whether to pass the action that is currently being evaluated.

Parameters

• proposal – The Proposal that is being run.

• users –

• users who should be notified. (The) –

39

PolicyKit

get_roles()
Returns a QuerySet of all roles in the community.

get_username_to_readable_name_dict()
Returns a dictionary mapping usernames to readable names.

get_users(role_names=None)
Returns a QuerySet of all users in the community on this platform.

get_users_with_permission(permission=None)
Returns a QuerySet of all users with the given permission

40 Chapter 7. Community

CHAPTER

EIGHT

ACTIONS

8.1 BaseAction

class policyengine.models.BaseAction(*args, **kwargs)
Base Action

community
The CommunityPlatform in which the action occurred (or was proposed). If proposed through the
PolicyKit app, this is the community that the proposing user was authenticated with.

initiator
The CommunityUser who initiated the action. May not exist if initiated by PolicyKit.

is_bundled
True if the action is part of a bundle.

kind = None
Kind of action. One of ‘platform’ or ‘constitution’ or ‘trigger’. Do not override.

data_store
Datastore for persisting any additional data related to the proposal.

property action_type
The type of action (such as ‘slackpostmessage’ or ‘policykitaddcommunitydoc’).

8.2 ConstitutionAction

Extends BaseAction.

8.3 PlatformAction

Extends BaseAction.

41

PolicyKit

42 Chapter 8. Actions

CHAPTER

NINE

POLICY

class policyengine.models.Policy(*args, **kwargs)

kind
Kind of policy (platform, constitution, or trigger).

filter
The filter code of the policy.

initialize
The initialize code of the policy.

notify
The notify code of the policy.

success
The pass code of the policy.

fail
The fail code of the policy.

community
The community which the policy belongs to.

action_types
The action types that this policy applies to.

name
The name of the policy.

description
The description of the policy. May be empty.

is_active
True if the policy is active. Default is True.

modified_at
Datetime object representing the last time the policy was modified.

bundled_policies
Policies bundled inside this policy.

property is_bundled
True if the policy is part of a bundle

update_variables(variable_data={})
Update related variables based on dict

43

PolicyKit

copy_to_community(community=None, variable_data={})
Make a copy of the policy object and assign to a new community

44 Chapter 9. Policy

CHAPTER

TEN

PROPOSAL

class policyengine.models.Proposal(*args, **kwargs)
The Proposal model represents the evaluation of a particular policy for a particular action. All data relevant to
the evaluation, such as vote counts, is stored in this model.

proposal_time
Datetime object representing when the proposal was created.

status
Status of the proposal. One of PROPOSED, PASSED or FAILED.

policy
The policy that is being evaluated.

action
The action that triggered the proposal.

data
Datastore for persisting any additional data related to the proposal.

vote_post_id
Platform identifier of the voting post, if any.

governance_process
The Metagov GovernanceProcess that is being used to make a decision about this Proposal, if any.

property vote_url
The URL of the vote associated with this policy evaluation, if any.

property is_vote_closed
Returns True if the vote is closed, False if the vote is still open.

get_time_elapsed()
Returns a datetime object representing the time elapsed since the first proposal.

get_all_boolean_votes(users=None)
For Boolean voting. Returns all boolean votes as a QuerySet. Can specify a subset of users to count votes
of. If no subset is specified, then votes from all users will be counted.

get_yes_votes(users=None)
For Boolean voting. Returns the yes votes as a QuerySet. Can specify a subset of users to count votes of.
If no subset is specified, then votes from all users will be counted.

get_no_votes(users=None)
For Boolean voting. Returns the no votes as a QuerySet. Can specify a subset of users to count votes of.
If no subset is specified, then votes from all users will be counted.

45

PolicyKit

get_all_number_votes(users=None)
For Number voting. Returns all number votes as a QuerySet. Can specify a subset of users to count votes
of. If no subset is specified, then votes from all users will be counted.

get_one_number_votes(value, users=None)
For Number voting. Returns number votes for the specified value as a QuerySet. Can specify a subset of
users to count votes of. If no subset is specified, then votes from all users will be counted.

46 Chapter 10. Proposal

CHAPTER

ELEVEN

DOCUMENTS

11.1 CommunityDoc

class policyengine.models.CommunityDoc(*args, **kwargs)

name
The name of the document.

text
The text within the document.

community
The community which the document belongs to.

is_active
True if the document is active. Default is True.

47

PolicyKit

48 Chapter 11. Documents

CHAPTER

TWELVE

USER

12.1 CommunityUser

Extends User.

class policyengine.models.CommunityUser(*args, **kwargs)

readable_name
The readable name of the user. May or may not exist.

community
The community which the user belongs to.

access_token
The access token which the user uses on login. May or may not exist.

is_community_admin
True if the user is an admin. Default is False.

avatar
The URL of the avatar image of the user. May or may not exist.

get_roles()
Returns a list of CommunityRoles containing all of the user’s roles.

has_role(name)
Returns True if the user has a role with the specified role_name.

Parameters name – The name of the role to check for.

property constitution_community
The ConstitutionCommunity that this user belongs to.

49

PolicyKit

50 Chapter 12. User

CHAPTER

THIRTEEN

ROLE

13.1 CommunityRole

Extends Group.

class policyengine.models.CommunityRole(*args, **kwargs)

community
The community which the role belongs to.

role_name
The readable name of the role.

description
The readable description of the role. May be empty.

is_base_role
Whether this is the default role in this community.

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL
insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

51

PolicyKit

52 Chapter 13. Role

CHAPTER

FOURTEEN

VOTE

14.1 UserVote

class policyengine.models.UserVote(*args, **kwargs)

user
The user who cast the vote.

proposal
The policy proposal that initiated the vote.

vote_time
Datetime object representing when the vote was cast.

get_time_elapsed()
Returns a datetime object representing the time elapsed since the vote was cast.

14.2 BooleanVote

Extends UserVote.

class policyengine.models.BooleanVote(*args, **kwargs)

boolean_value
The value of the vote. Either True (‘Yes’) or False (‘No’).

14.3 NumberVote

Extends UserVote.

class policyengine.models.NumberVote(*args, **kwargs)

number_value
The value of the vote. Must be an integer.

53

PolicyKit

54 Chapter 14. Vote

CHAPTER

FIFTEEN

DATASTORE

class policyengine.models.DataStore(*args, **kwargs)
DataStore used for persisting serializable data on a Proposal.

get(key)
Returns the value associated with the given key.

Parameters key – The key associated with the value.

set(key, value)
Stores the given value, referenced by the given key.

Parameters

• key – The key to associate with the given value.

• value – The value to store.

remove(key)
Removes the value associated with the given key. Returns True if a value was found and removed. Returns
False otherwise.

Parameters key – The key associated with the value to be removed.

55

PolicyKit

56 Chapter 15. Datastore

PYTHON MODULE INDEX

p
policyengine.models, 53

57

PolicyKit

58 Python Module Index

INDEX

A
access_token (policyengine.models.CommunityUser

attribute), 49
action (policyengine.engine.EvaluationContext at-

tribute), 37
action (policyengine.models.Proposal attribute), 45
action_type() (policyengine.models.BaseAction

property), 41
action_types (policyengine.models.Policy attribute),

43
avatar (policyengine.models.CommunityUser at-

tribute), 49

B
BaseAction (class in policyengine.models), 41
boolean_value (policyengine.models.BooleanVote

attribute), 53
BooleanVote (class in policyengine.models), 53
bundled_policies (policyengine.models.Policy at-

tribute), 43

C
Community (class in policyengine.models), 39
community (policyengine.models.BaseAction at-

tribute), 41
community (policyengine.models.CommunityDoc at-

tribute), 47
community (policyengine.models.CommunityPlatform

attribute), 39
community (policyengine.models.CommunityRole at-

tribute), 51
community (policyengine.models.CommunityUser at-

tribute), 49
community (policyengine.models.Policy attribute), 43
community_name (poli-

cyengine.models.CommunityPlatform at-
tribute), 39

CommunityDoc (class in policyengine.models), 47
CommunityPlatform (class in policyengine.models),

39
CommunityRole (class in policyengine.models), 51
CommunityUser (class in policyengine.models), 49

constitution_community() (poli-
cyengine.models.CommunityUser property),
49

copy_to_community() (policyengine.models.Policy
method), 43

D
data (policyengine.models.Proposal attribute), 45
data_store (policyengine.models.BaseAction at-

tribute), 41
DataStore (class in policyengine.models), 55
description (policyengine.models.CommunityRole

attribute), 51
description (policyengine.models.Policy attribute),

43
discord (policyengine.engine.EvaluationContext at-

tribute), 37
discourse (policyengine.engine.EvaluationContext at-

tribute), 37

E
EvaluationContext (class in policyengine.engine),

37

F
fail (policyengine.models.Policy attribute), 43
filter (policyengine.models.Policy attribute), 43

G
get() (policyengine.models.DataStore method), 55
get_all_boolean_votes() (poli-

cyengine.models.Proposal method), 45
get_all_number_votes() (poli-

cyengine.models.Proposal method), 45
get_constitution_policies() (poli-

cyengine.models.Community method), 39
get_documents() (policyengine.models.Community

method), 39
get_no_votes() (policyengine.models.Proposal

method), 45
get_one_number_votes() (poli-

cyengine.models.Proposal method), 46

59

PolicyKit

get_platform_policies() (poli-
cyengine.models.Community method), 39

get_roles() (policyengine.models.Community
method), 39

get_roles() (policyengine.models.CommunityPlatform
method), 39

get_roles() (policyengine.models.CommunityUser
method), 49

get_time_elapsed() (poli-
cyengine.models.Proposal method), 45

get_time_elapsed() (poli-
cyengine.models.UserVote method), 53

get_trigger_policies() (poli-
cyengine.models.Community method), 39

get_username_to_readable_name_dict()
(policyengine.models.CommunityPlatform
method), 40

get_users() (policyengine.models.CommunityPlatform
method), 40

get_users_with_permission() (poli-
cyengine.models.CommunityPlatform method),
40

get_yes_votes() (policyengine.models.Proposal
method), 45

github (policyengine.engine.EvaluationContext at-
tribute), 37

governance_process (poli-
cyengine.models.Proposal attribute), 45

H
has_role() (policyengine.models.CommunityUser

method), 49

I
initialize (policyengine.models.Policy attribute), 43
initiate_vote() (poli-

cyengine.models.CommunityPlatform method),
39

initiator (policyengine.models.BaseAction at-
tribute), 41

is_active (policyengine.models.CommunityDoc at-
tribute), 47

is_active (policyengine.models.Policy attribute), 43
is_base_role (policyengine.models.CommunityRole

attribute), 51
is_bundled (policyengine.models.BaseAction at-

tribute), 41
is_bundled() (policyengine.models.Policy property),

43
is_community_admin (poli-

cyengine.models.CommunityUser attribute),
49

is_vote_closed() (policyengine.models.Proposal
property), 45

K
kind (policyengine.models.BaseAction attribute), 41
kind (policyengine.models.Policy attribute), 43

L
logger (policyengine.engine.EvaluationContext at-

tribute), 38
loomio (policyengine.engine.EvaluationContext at-

tribute), 37

M
metagov (policyengine.engine.EvaluationContext at-

tribute), 37
modified_at (policyengine.models.Policy attribute),

43
module

policyengine.models, 39, 41, 43, 45, 47, 49,
51, 53, 55

N
name (policyengine.models.CommunityDoc attribute),

47
name (policyengine.models.Policy attribute), 43
notify (policyengine.models.Policy attribute), 43
number_value (policyengine.models.NumberVote at-

tribute), 53
NumberVote (class in policyengine.models), 53

O
opencollective (poli-

cyengine.engine.EvaluationContext attribute),
37

P
platform (policyengine.models.CommunityPlatform

attribute), 39
Policy (class in policyengine.models), 43
policy (policyengine.engine.EvaluationContext at-

tribute), 37
policy (policyengine.models.Proposal attribute), 45
policyengine.models

module, 39, 41, 43, 45, 47, 49, 51, 53, 55
Proposal (class in policyengine.models), 45
proposal (policyengine.engine.EvaluationContext at-

tribute), 37
proposal (policyengine.models.UserVote attribute), 53
proposal_time (policyengine.models.Proposal at-

tribute), 45

R
readable_name (poli-

cyengine.models.CommunityUser attribute),
49

60 Index

PolicyKit

reddit (policyengine.engine.EvaluationContext at-
tribute), 37

remove() (policyengine.models.DataStore method), 55
role_name (policyengine.models.CommunityRole at-

tribute), 51

S
save() (policyengine.models.CommunityRole method),

51
set() (policyengine.models.DataStore method), 55
slack (policyengine.engine.EvaluationContext at-

tribute), 37
sourcecred (policyengine.engine.EvaluationContext

attribute), 37
status (policyengine.models.Proposal attribute), 45
success (policyengine.models.Policy attribute), 43

T
text (policyengine.models.CommunityDoc attribute),

47

U
update_variables() (policyengine.models.Policy

method), 43
user (policyengine.models.UserVote attribute), 53
UserVote (class in policyengine.models), 53

V
variables (policyengine.engine.EvaluationContext at-

tribute), 38
vote_post_id (policyengine.models.Proposal at-

tribute), 45
vote_time (policyengine.models.UserVote attribute),

53
vote_url() (policyengine.models.Proposal property),

45

Index 61

	Installation and Getting Started
	Local Development
	Running PolicyKit on a Server
	Deploy with Apache web server
	Set up Celery
	Interactive Django Shell
	Set up Integrations

	Developing the Metagov Gateway

	Design Overview
	Data Model
	Policy Engine Evaluation Loop

	Writing Policies
	Action Types
	Filter
	Initialize
	Check
	Notify
	Pass
	Fail

	Platform Integrations
	Slack
	Open Collective
	Loomio
	GitHub
	SourceCred
	Reddit
	Discord
	Discourse
	Setting up your Discourse community
	Installing PolicyKit to your Discourse community
	Signing in to your PolicyKit dashboard

	Metagov (experimental)
	Webhook Trigger Action
	Performing actions
	Performing governance processes

	Policy Examples
	Vote on renaming Slack channels
	Vote on OpenCollective expenses in Slack with restricted voting
	Vote on OpenCollective expenses in Loomio
	Trigger a vote in Discord
	Minimum SourceCred value required for creating Discourse Topic
	Don’t allow posts in Slack channel
	Discord ping
	Consensus vote in Slack with restricted voting + reminder
	All Constitution Actions need 1 approval in Slack
	All Constitution Actions Pass and get posted in Slack

	EvaluationContext
	Community
	Community
	CommunityPlatform

	Actions
	BaseAction
	ConstitutionAction
	PlatformAction

	Policy
	Proposal
	Documents
	CommunityDoc

	User
	CommunityUser

	Role
	CommunityRole

	Vote
	UserVote
	BooleanVote
	NumberVote

	Datastore
	Python Module Index
	Index

